NORTHEAST PACIFIC ALBACORE OCEANOGRAPHY SURVEY, 1961

by R. W. Owen, Jr.

Marine Biological Laboratory
LIBRARY
JAN 2 7 1964
WOODS HOLE, MASS.

UNITED STATES DEPARTMENT OF THE INTERIOR
FISH AND WILDLIFE SERVICE

UNITED STATES DEPARTMENT OF THE INTERIOR, Stewart L. Udall, Secretary

FISH AND WILDLIFE SERVICE, Clarence F. Pautzke, Commissioner
BUREAU OF COMMERCIAL FISHERIES, Donald L. McKernan, Director

NORTHEAST PACIFIC ALBACORE OCEANOGRAPHY SURVEY, 1961

by

R. W. Owen, Jr.

United States Fish and Wildlife Service Special Scientific Report--Fisheries No. 444

> Washington, D.C. November 1963

CONTENTS

	Page
Introduction	1
Observations and field procedures:	
Physical and chemical methods	2
Biological methods	2
Laboratory procedures	3
Acknowledgements	16
Scientific personnel	16
Literature cited	16

Figure 1.--Cruise track and station positions on John N. Cobb Cruise 51, July 1961. "H" designates hydrographic stations, "P" designates productivity stations.

Figure 1.--Cruise track and station positions on John N. Cobb Cruise 51, July 1961. "H" designates hydrographic stations, "P" designates productivity stations.

NORTHEAST PACIFIC ALBACORE OCEANOGRAPHY SURVEY, 1961

by

R. W. Owen, Jr.
Fishery Biologist Research
Bureau of Commercial Fisheries
U.S. Fish and Wildlife Service
San Diego, California

ABSTRACT

Oceanographic and biological data obtained on the first of a series of albacore oceanography cruises are presented in this report, together with a statement of the methods employed. The cruises are a cooperative venture between the Bureau of Commercial Fisheries Biological Laboratory, San Diego, Calif., and the Exploratory Fishing and Gear Research Base, Seattle, Wash.

The first cruise was made during July 1961 between latitudes 420 N. to 480 N. and longitudes 1250 30' W. to 1320 W. Measured were salinity, temperature, and oxygen concentration from 0 to 600 meters, zooplankton standing crop from 0 to 140 meters, surface phytoplankton pigments and productivity, and incoming solar radiation. Other activities included trolling and gill netting for albacore, logging weather observations, and collecting with nightlights.

INTRODUCTION

The present work is a report on the first of a series of annual oceanography cruises planned for the region off the coasts of Washington and Oregon at the time of year when albacore, *Thunnus alalunga* (Bonnaterre), usually are available. The survey was a cooperative venture of the Bureau of Commercial Fisheries Biological Laboratory, San Diego, Calif., with the Bureau's Exploratory Fishing and Gear Research Base, Seattle, Wash. The vessel used was M/V *John N. Cobb*, operated by the latter group. The principal objective of the cruise was to provide data for investigating relation-

ships between availability of albacore and mensurable features of the environment.

In Washington-Oregon coastal waters, marked fluctuations in the annual commercial catch of albacore have characterized this fishery since its inception in 1937, and apparently are related to variable features of the oceanic environment (Alverson, 1961; Johnson, 1962). Exploratory fishing for albacore was conducted in this area from 1949 to 1952 and in 1956 as part of the North Pacific Exploratory Fishing Program of the Bureau of Commercial Fisheries (Powell and Hildebrand, 1950; Powell, Alverson, and Livingstone, 1952;

Schaefers, 1952 and 1953; Powell, 1957). The Fish Commission of Oregon made independent exploratory fishing and tagging cruises in 1959, 1960, and 1961.¹

Albacore trolling has been conducted on oceanographic survevs Washington-Oregon coast. In 1955 and 1956 oceanographic and biological data were collected from the British Columbia, Washington, Oregon, and northern California coastline out to about longitude 145° W. (Holmberg²: Love, 1957). In the fall of 1956, vessels of the Bureau of Commercial Fisheries Pacific Oceanic Fishery Investigations collected data from longitude 1500W, to the American Pacific coast between latitudes 310 N. and 460 N. (Callaway, 1957). The Northeastern Pacific Albacore Survey (NEPAS) operated in 1957 between latitudes 35° N. and 47° N. (Callaway and McGary, 1959; Graham, 1959). In 1958 the area off Washington and Oregon was surveyed as part of the International Geophysical Year (Fleming and staff, 1959).

On Exploratory Cruise 51 the M/V John N. Cobb departed Seattle on July 10, 1961, and proceeded to the cruise track (fig. 1). The first hydrographic station was occupied on July 11 and the last on July 26, 1961. During the cruise, the Cobb drifted at night. The vessel docked in Astoria, Oreg., on July 27.

OBSERVATIONS AND FIELD PROCEDURES

Physical and Chemical Methods

Hydrographic stations usually were occupied at noon and shortly after dark at intervals of about 48 nautical miles (fig. 1, table 1). Casts of 18 Nansen bottles each were made at 23 stations to depths of about 600 meters, and casts of 9 bottles each were made at 2 stations to about 120 meters depth. Results of physical and chemical measurements are presented in figures 2-10 and in tables 2-4.

Nansen bottle spacings were determined by characteristics of bathythermograph (BT)

¹ Robert J. Ayers. 1959, 1960, 1961. Unpublished reports of the Fish Commission of Oregon.

traces obtained at each station and by anticipated wire angles. Because the hydrographic wire was of small diameter (1/8 inch), two casts were made at each station: a shallow cast to sample from 0 to 125 meters and a deep cast to sample from 125 to 600 meters. Paired protected reversing thermometers were attached to each bottle, and most bottles sampling below 100 meters were equipped with unprotected reversing thermometers. Samples were drawn for salinity and oxygen analysis. Oxygen determinations were made aboard the Cobb, and salinity determinations were made at the Department of Oceanography, University of Washington.

Bathythermograph casts to 900 feet were made at each hydrographic station and at points about halfway between stations (fig. 1, table 3). The vessel was stopped for all BT casts. Observations were made in accordance with U.S. Navy Hydrographic Office Publication No. 606-c (1956).

Drift bottles were released at 19 stations (tables 1 and 2). These were provided by Hans T. Klein, Data Collection and Processing Group, Scripps Institution of Oceanography. No recoveries had been received as of March 1962.

Continuous recording of incident solar radiation was made throughout the cruise. The sensor used was a gimbal-mounted pyranometer using Parsons' Black as the "black body." A strip-chart recorder provided the trace (table 4).

Biological Methods

Surface measurements of primary production using the C^{14} method were made at 21 stations. These were often coincident with hydrographic station locations but are labelled independently of hydrographic stations due to occasional differences in time and location (fig. 11, tables 1 and 5). The method employed is a modification of those described by Steemann Nielsen (1952), Strickland (1960), and Strickland and Parsons (1960). Water samples were obtained with a plastic bucket from the

²Edwin K. Holmberg. 1956. Unpublished report of the Fish Commission of Oregon.

sea surface at sunrise and local noon. Water was placed in clear ("light") and opaque ("dark") 125-ml. glass-stoppered Pyrex bottles. Each sample was inoculated with 1 ml. of C^{14} solution (1.7 microcuries/ml.) and trailed from sunrise to local apparent noon or from local apparent noon to sunset. After incubation, samples were immediately filtered through 25-mm. membrane filters (0.30-micron (μ) \pm .02- μ pore size - manufacturer's rating). The filters were rinsed with 2 ml. of 0.05 N HC1 and placed in a vacuum dessicator for counting ashore.

Surface chlorophyll samples were obtained at 28 stations (fig. 12, tables 1 and 6). Three surface water samples of 2.0-3.0 liters each were taken at the same time that water was taken for primary production measurement. These were filtered immediately through 47-mm. membrane filters $(0.45-\mu\pm.02-\mu$ pore size). Small amounts of magnesium carbonate were added during filtration. The filters were dessicated and frozen for shore analysis of chlorophyll <u>a</u>.

Oblique zooplankton hauls were made at 10 noon stations, coincident with hydrographic and productivity stations (tables 7 and 8). Samples were collected with a 1-meter net identical to those used on cruises of the California Cooperative Oceanic Fisheries Investigations (e.g., Thrailkill, 1956) and of the Pacific Oceanic Fisheries Investigations (King and Demond, 1953). Calibration of the water-flow meter was done before and after the cruise. The meter was affixed to a towing frame and hauled back and forth through a 50-ft, water course at 13 speeds from 1.3 to 3.6 ft./sec. Revolutions/sec. recorded at each speed, averaged to cancel current effects, were plotted against distance traversed/revolution to establish a calibration curve. Water volumes recorded on net hauls were calculated by multiplying the net-mouth area by the distance traversed as indicated by the flow meter. No extensive clogging of the plankton net was evident during the cruise.

Trolling for albacore was conducted between stations at 6 to 8 knots with six to eight lines. Feather jigs were used, supplemented occasionally by bone-type jigs. About 205 hours were spent trolling, generally from one-half hour before sunrise to one-half hour after sunset. Sixty albacore were caught (fig. 13, table 9); six of these were released wearing tags supplied by the Fish Commission of Oregon. Blood samples were taken from 16 albacore for serological analysis by Lucian Sprague of the Bureau of Commercial Fisheries Biological Laboratory, Honolulu.

Nightly sets of eight shackles (400 fathoms) of gill nets were made between July 11 and July 17 (table 10). On the morning of July 18, the nets could not be found; probably the nets sank under a load of blue sharks, *Prionace glauca* (Linnaeus). Many had been enmeshed on previous sets. Two albacore and one bluefin tuna, *Thunnus thynnus* (Linnaeus), were caught on the set of July 14-15 at station H-7 (fig. 13).

LABORATORY PROCEDURES

Salinity determinations were made through the courtesy of the Department of Oceanography, University of Washington, on a conductivity bridge calibrated against Copenhagen Water (figs. 3, 6, and 9; table 2). Accuracy is better than ± 0.005 %.

Oxygen determinations (table 2) were made on board the vessel by the Winkler method according to procedures outlined by Wooster³ and Chow.⁴

Chlorophyll samples were transported under refrigeration to San Diego for analysis (fig. 12, table 6). The method of analysis used was that described by Holmes and others (1958), except that extraction in acetone was allowed to proceed for 16-18 hours. Equations used in calculation of chlorophyll <u>a</u> are those of Richards with Thompson (1952).

³ Warren S. Wooster. 1950. Methods in chemical oceanography employed in the California Cooperative Sardine Research Program. Technical Report of 25 November 1950, Scripps Institution of Oceanography, 27 p. Mimeographed.

⁴ T. J. Chow. 1961. Field guide for the STEP-I Expédition. Scripps Institution of Oceanography, 35 p. Mimeographed.

Figure 2,--Horizontal distribution of temperature at 10 m. Contour interval is 0,5°C.

Figure 3,--Horizontal distribution of salinity at 10 m. Contour interval is 0.5 $\%_{\rm o}$.

Figure 4.--Horizontal distribution of oxygen concentration at 10 m. Contour interval is 0.5 ml./1.

Figure 5.--Horizontal distribution of temperature at 100 m. Contour interval is 0.25° C.

Figure 6.--Horizontal distribution of salinity at 100 m. Contour interval is 0.1 % o.

Figure 7.--Horizontal distribution of oxygen concentration at 100 m. Contour interval is $0.25 \text{ ml}_{\bullet}/l_{\bullet}$

Figure 8.--Vertical profiles of temperature. Profiles are along track lines defined by station numbers at top of each. Contour interval is $1\,^{\circ}$ C.

Figure 9.--Vertical profiles of salinity. Profiles are along track lines defined by station numbers at top of each. Contour interval is 0.25 %0 except in shaded portions where contour interval is 1 %0.

Figure 10_{\circ} --Vertical profiles of oxygen concentration. Profiles are along track lines defined by station numbers at top of each. Contour interval is $1 \text{ m1}_{\circ}/1_{\circ}$ except for dashed line.

Figure 11.--Primary productivity at sea surface.

Figure 12.--Chlorophyll a concentrations at sea surface.

Figure 13.--Albacore tuna catches made with trolling gear and gill nets. Numbers above or beside track line segments are July dates. Circled numbers on track line segments represent catch location and number of fish caught. Fish were troll-caught except as noted.

Measurements of primary production, estimated by rates of carbon fixation by phytoplankton, were made using standardized C¹⁴ solution (fig. 11, table 5). The solution was made up in the manner described by Steemann Nielsen (1952), except that triple glass-distilled water was used as the carrier instead of artificial sea water. The solution was adjusted to pH 9.0, filtered through a membrane filter and placed in clean 5-ml. ampoules, which then were sealed and autoclaved.

Filters retaining the incubated phytoplankton were given to the Department of Oceanography. University of Washington, for counting. The activity on the filter was measured with a continuous gas flow geiger counter equipped with a mylar end-window. Dark bottle uptake measurements indicated an accumulated bacterial population and were not used in calculations of primary productivity. Light bottles were scrubbed daily and had no such accumulation. Homes et al (1958; p. 8) previously found that ". . . dark bottle uptake averages 10-13% of the uptake in illuminated bottles " His observation is supported by initial measurements on the July 1961 Cobb cruise. On this basis dark bottle uptake was assumed to be 10 percent of that in light bottles. Since this is offset by the "isotopeeffect" correction (Steemann Nielsen, 1952). both terms were omitted in calculation of primary productivity.

Hydrographic cast data were processed by the Data Collection and Processing Group of Scripps Institution of Oceanography following procedures described by Klein ⁵ (table 2), Bathythermograph slides also were processed at Scripps Institution of Oceanography under the supervision of Margaret K. Robinson (table 3). Traces were used to verify temperature-depth configuration obtained from hydrographic station data.

Zooplankton samples were analyzed to identify and determine relative abundance of the organisms present for selection of species to be more closely examined later. Letters which designate abundance of the various taxonomic

groups (table 8) are relative only to the total in each sample. They have no absolute numerical significance. Groups in parentheses are tentative identifications.

ACKNOWLEDGMENTS

Special acknowledgment is made to the Data Collection and Processing Group of Scripps Institution of Oceanography for processing hydrographic cast and BT data and to the Department of Oceanography, University of Washington, for their analysis of salinity and C¹⁴ productivity samples. Also greatly appreciated is the loan of hydrographic data by the Department of Oceanography, University of Washington, for verification of horizontal salinity, temperature, and oxygen distribution (figs. 2-7). These data were obtained on M/V Brown Bear cruise 290 from July 6-25, 1961, and will be published by the collecting agency.

SCIENTIFIC PERSONNEL

Fishery methods and

equipment specialist,

eries, San Diego, Calif.

Fishing

Exploratory

and Gear Research
Base, Seattle, Wash.;
party chief

Peter Larson

Master, M/V John N.
Cobb, Seattle, Wash.

Jan B. Lawson

Senior Marine Technician, Scripps Institution of Oceanography,
La Jolla, Calif.

Robert W. Owen, Jr.

Fishery Biologist (Research), Bureau of
Commercial Fish-

LITERATURE CITED

ALVERSON, DAYTON L.

Harold C. Johnson

1961. Ocean temperatures and their relation to albacore tuna (Thunnus germo) distribution in waters off the coast of Oregon, Washington and British Columbia. Journal of the Fisheries Research Board of Canada, vol. 18, no. 6, p. 1145-1152.

 $^{^5}$ Hans T. Klein. A new technique for processing physical oceanographic data. Contributions from the Scripps Institution of Oceanography, New Series, No. 000. Undated, typed $M_{\bullet}S_{\bullet}$

CALLAWAY, RICHARD J.

1957. Oceanographic and meteorological observations in the Northeast and Central North Pacific, July-December 1956. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 230, 49 p.

CALLAWAY, RICHARD J., and JAMES W. McGARY.

1959. Northeastern Pacific Albacore Survey, Part 2. Oceanographic and meteorological observations. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 315, 133 p.

FLEMING, RICHARD H., and Staff.

1959. Physical and chemical data, North Pacific Ocean. Brown Bear Cruise 199, July-August 1958 for the International Geophysical Year of 1957-58. University of Washington, Department of Oceanography, Special Report No. 30, Reference 58-32, 284 p.

GRAHAM, JOSEPH J.

1959. Northeastern Pacific Albacore Survey, Part 1. Biological observations. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 310, 33 p.

HOLMES, ROBERT W., and Others.

1958. Physical, chemical, and biological oceanographic observations obtained on Expedition SCOPE in the eastern tropical Pacific, November-December 1956. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 279, 117 p.

JOHNSON, JAMES H.

1962. Sea temperatures and the availability of albacore off the coasts of Oregon and Washington. Transactions of the American Fisheries Society, vol. 91, no. 3, p. 269-274.

KING, JOSEPH E., and JOAN DEMOND.

1953. Zooplankton abundance in the Central Pacific. U.S. Fish and Wildlife Service, Fishery Bulletin 82, vol. 54, p. 112-144.

LOVE, CUTHBERT M.

1957. Northeast Pacific Ocean physical and chemical data. Summers of 1955 and 1956. University of Washington, Department of Oceanography, Technical Report No. 55, Reference 57-27, 104 p.

POWELL, DONALD E.

1957. North Pacific albacore tuna exploration by the M/V John N. Cobb --1956. U.S. Fish and Wildlife Service, Commercial Fisheries Review, vol. 19, no. 6, p. 1-9.

POWELL, DONALD E., DAYTON L. ALVER-SON, and ROBERT LIVINGSTONE, JR.

1952. North Pacific albacore tuna exploration--1950. U.S. Fish and Wildlife Service, Fishery Leaflet 402, 56 p.

POWELL, DONALD E., and HENRY H. HILDEBRAND.

1950. Albacore tuna exploration in Alaska and adjacent waters--1949. U.S. Fish and Wildlife Service, Fishery Leaflet 376, 34 p.

RICHARDS, FRANCIS A., with THOMAS G. THOMPSON.

1,952. The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. Journal of Marine Research, vol. 11, no. 2, p. 156-172.

SCHAEFERS, EDWARD A.

1952. North Pacific albacore tuna exploration--1951. U.S. Fish and Wildlife Service, Commercial Fisheries Review, vol. 14, no. 5, p. 1-12.

1953. North Pacific albacore tuna exploration, 1952. U.S. Fish and Wildlife Service, Commercial Fisheries Review, vol. 15, no. 9, p. 1-6.

STEEMANN NIELSEN, E.

1952. The use of radio-active carbon (C¹⁴) for measuring organic production in the sea. Journal du Conseil Permanent International pour l'Exploration de la Mer, vol. 18, no. 2, p. 117-140.

STRICKLAND, J. D. H.

1960. Measuring the production of marine phytoplankton. Fisheries Research Board of Canada, Bulletin No. 122, 172 p.

STRICKLAND, J. D. H., and T. R. PARSONS. 1960. A manual of sea water analysis. Fisheries Research Board of Canada, Bulletin No. 125, p. 153-163. THRAILKILL, JAMES R.

1956. Relative areal zooplankton abundance off the Pacific coast. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 188, 85 p.

U.S. NAVY HYDROGRAPHIC OFFICE.

1956. Bathythermograph observations. Hydrographic Office Publication No. 606-c., 12 p.

EXPLANATION OF DATA TABLES

- Table 1.--Summary of station observations. Hydrographic stations have the prefix "H", while productivity stations are numbered independently and have the prefix "P". Time entries at productivity stations are times of initial water collection. Time entries at hydrographic stations are times of first messenger release. All times are to the nearest 5 minutes and are Pacific Standard Time (PST: +8 zone).
- Table 2.--Tabulated hydrographic station data.

 Time entries are times of first messenger releases on each cast and are GCT. Messenger times and wire angles are given in order of increasing depth when more than one cast was made on a station. A line is left blank between observed data of each cast.

To indicate degree of accuracy, temperatures are recorded in tenths of a degree Celsius (C.) when obtained by bucket thermometer or bathythermograph while temperatures from reversing thermometers are recorded in hundredths of a degree C. Extrapolated values and values interpolated between widely spaced observations are entered in parentheses. Hyphens indicate missing observed values.

- Table 3.--Bathythermograph observations. Observations presented in accordance with H.O. Publication No. 606-c (1956). Lowerings to 450 ft. are indicated by post-script "a" after the slide number. All other lowerings were made to 900 ft. Observations made at hydrographic stations are indicated in the last column by the station number. Between-station BTs are indicated by hyphens in that column.
- Table 4.--Solar radiation measurements.

 Integrated values are given for morning and afternoon to allow better comparisons between productivity measurements.

Values in parentheses are approximate because of occasional recorder pen difficulties.

- Table 5.--Surface C 14 productivity measurements. Time entries are times of water collection and are PST (+8 zone). Values in parentheses are questionable by virtue of either slow filtration or damaged filter. These values are not included in station averages or in figure 4.
- Table 6.--Surface chlorophyll <u>a</u> measurements. Time entries are times of initial water collection and are PST (+8 zone). Values in parentheses are questionable by virtue of either slow filtration or high optical density at 750 m μ wave length. These values are not included in station averages or in figure 3.
- Table 7.--Zooplankton collection data. Time entries are PST (+8 zone). Volume of water recorded is here considered to be volume of water strained by the net although no corrections for net resistance or clogging have been applied to calibrations of the meter. Zooplankton displacement volume is the drained wet volume of organisms captured, after removal of organisms whose volume exceeds 5 cm. 3.
- Table 8.--Relative abundance of zooplankton organisms. Taxa in parentheses are tentative identifications. The author is responsible for these and other identifications.
- Table 9.--Trolling results. Time entries are PST (+8 zone).
- Table 10.--Gill net results. Time entries are PST (+8 zone).

Abbreviations and Headings used in Data Tables

		-0
GCT	- Greenwich Civil Time.	σ_{t} - expression for sea water
Lat. N.	 north latitude in degrees and minutes. 	density at atmospheric pressure where $\rho = \frac{\sigma_t}{1000} + 1$
Long. W.	 west longitude in degrees and minutes. 	♠ _T , 10 ⁻⁵ cm. ³ /g thermosteric anomaly, the
m.3	- cubic meters.	anomaly of specific volume attained if water were
cm.3	- cubic centimeters.	changed isothermally to a
1.	- liters.	standard pressure of 1 at- mosphere, relative to a
Т, С.	 temperature in degrees Celsius. 	standard sample of 35 $\frac{1}{\sqrt{2}}$ salinity, 0° C. at the same
S, %	 salinity in parts per mille rounded to nearest value at 2 decimal places from 3 	pressure. Tabular values multiplied by 10 ⁻⁵ will give the anomaly in cm. ³ /g.
	decimal places.	ΔD, dyn. m geopotential anomaly in
°T	- true bearing.	dynamic meters of the water layer between sur-
mb.	- millibars.	face and designated pressure. (Depth in meters is assumed numerically equal
0_2 , ml./l.	- oxygen concentration.	to pressure indecibars

to pressure indecibars.)

TABLE 1.--Summary of Station Observations

Date		Post	tion		Hydro-		c ¹⁴				Drift
(July	Time (PST)	Lat. N.	Long. W.	Station number	graphic	BT	produc-	Chloro- phyll	Phyto- plankton	Zoo- plankton	bottle
1961)		l			cast	ł	tivity				release
11	1250	47° 421	126°12'	H-1,P-1	Х	X	X	X	-	X	Х
11	2200	47° 45 '	127°35'	H-2	Х	X	-	-	-	-	X
12	0435	47° 44 ¹	127°33'	P-2	-	-	-	X	X	-	-
12	1340	47° 46'	128°45′	H-3,P-3	X	X	••	X	X	-	X
13	1350	46°41'	130°481	H-4,P-4	X	Χ	-	X	X	-	X
13	2055	46°00'	130°25'	H-5	X	X	-	-	-	-	-
14	0500	45°53′	130°30'	P-5	-	-	-	Х	X	-	-
14	1320	45°59'	129°11'	H-6,P-6	X	X	X	X	X	Х	X
14	2130	45°581	128°10'	H-7	X	Χ	-	~	-	~	X
15	0500	45°581	128°10'	P-7	-	-	X	X	X	-	-
15	1305	46°001	127°02'	H-8,P-8	X	Χ	X	X	X	X	X
15	2135	46°001	125°53'	H-9	X	X	-	-	-	-	Х
16	0525	45°541	125°59'	P-9	-	-	X	X	X	-	-
16	1040	46°001	125°31′	H-10	X	X	-	-	-	-	X
16	1240	45°53'	125°30'	P-10	-	-	X	X	X	X	-
16	2140	44°59'	125°30'	H-11	X	X	~	-	-	-	X
17	0455	44°58'	125°31'	P-11	-	-	X	X	X	-	~
17	1250	44°091	125°29'	H-12,P-1	2 X	Χ	X	X	Х	X	X
17	2135	43°18'	125°32'	H-13	X	Χ	-	••	-	-	X
18	0530	43°18'	125°32'	P-13	-	-	X	X	X	-	-
18	1250	43°18'	125°32'	P-13A	-	-	-	X	X	-	-
19	1230	42°13'	125°30'	P-14	-		X	X	X	-	-
19	1440	42°001	125°30'	H-14	X	X	-	-	-	X	X
20	0505	41°57'	126°09′	P-15	-	-	X	X	X	-	-
20	1335	42°001	127°04'	H-15,P-1	6 X	Χ	-	-	X	X	X
20	2150	41°59'	128°06′	H-16	X	X	_	-	-	-	-
21	0520	41°59'	128°18'	P-17	-	-	X	X	X	-	-
21	1305	42°001	129°20'	H-17,P-1	.8 x	X	-	X	X	X	X
21	2130	42°001	130°30'	H-18	X	X	-	-	-		X
22	0515	41°57'	130°36'	P-19	-	-	-	X	X	-	-
22	1240	42°001	132°00'	H-19,P-2	.0 -	-	X	X	X	-	-
22	1450	42°001	132°00'	H-19	X	X	-	-	-	Х	-
23	0510	42°32'	132°03'	P-21	-	~	X	X	X	-	-
23	1055	43°00'	132°00'	H-20	X	X	-	~	-	X	-
23	1240	43°12'	132°01'	P-22	-	-	Х	X	X	-	-
23	2135	1170,00 t	132°00'	H-21	X	X	-	-	**	-	-
24	0520	144°00°	131°56'	P-23	-	-	X	Х	X	-	-
24	1250	44°00°	130°56'	H-22,P-2	24 X	Χ	Х	Х	X	-	-
24	2145	44°01'	129°51'	H-23	X	X	-	-	-	-	-
25	0520	43°55'	129°47'	P-25	-	-	X	Х	Х	-	-
25	1345	44°02'	128°42'	H-24,P-2	26 X	X	X	X	X	-	X
26	0535	44°06'	126°44′	P-27	-	-	X	Х	X	-	••
26	1250	44°061	126°01'	H-25,P-2	28 X	X	Х	Х	Х	-	Х

TABLE 2.-- Tabulated hydrographic station data

		OBSER	VED			INTERPO	LATED		CC	MPUTED		
Depth	T.	s.	02	δ _T 10cm./g.	Depth	T.	s.	02	σ_{t}	δ _T	ΔD	
m.	°C.	%。	ml./1.	10cm./g.	m.	°C.	%	ml/1.	g./l.	10cm./g.	dyn.m.	
	1961; 20 1 no. 1,		119 GCT ;	47°42'N.	, 126°12	'W.; wire	angle, C	04°, 13°;	drift bo	ottles, l	2;	H-1
0 5 10 20 30 50 70 95	15.71 14.88 14.72 13.86 11.76 8.94 8.27 8.30 7.98	31.64 31.65 31.65 32.37 32.46 32.59 32.66 33.26	5.96 6.00 5.96 6.02 6.72 6.12 5.64 4.08 3.09	463 446 442 372 327 272 256 213 182	0 10 20 30 50 75 100 125 150	15.71 14.72 13.86 11.76 8.94 8.16 8.26 7.93 7.59	31.64 31.65 32.37 32.46 32.59 32.72 33.32 33.65 33.92	5.96 5.96 6.021/ 6.12 5.45 3.88 3.05 2.53	23.25 23.48 24.21 24.68 25.26 25.48 25.94 26.25 26.51	463 442 372 327 272 251 207 178 153	0.00 0.05 0.09 0.12 0.18 0.25 0.30 0.35 0.39	
122 ² / 157 190 224 268 325 400 473 553	7.91 7.50 7.08 6.70 6.38 5.95 5.51 5.09 4.68	33.69 33.92 33.91 33.96 34.00 34.02 34.06 34.13 34.18	3.02 2.49 2.34 2.04 1.80 1.26 0.95 0.60 0.38	175 152 147 138 132 125 117 107 98	200 250 300 400 500	6.96 6.50 6.14 5.51 4.92	33.93 33.99 34.02 34.06 34.16	2.23 1.90 1.50 0.95 0.48	26,60 26,71 26,78 26,89 27,04	144 134 127 117 103	0.47 0.54 0.61 0.74 0.85	
			626 GCT;	47°45'N.	, 12 7° 35	'W.; wire	angle, C	2°, 07°;	drift bo	ottles, l	2;	H-2
1 6 11 21 31 51 71 96 126 124 ² / 158 193 228 272	1 no. 2, 16.16 16.17 16.16 15.80 11.48 8.99 7.86 7.50 7.52 7.21 6.84 6.27 5.70	32.06 32.02 32.02 32.05 32.15 32.56 32.61 33.09 33.53 33.55 33.78 33.87 33.90 33.91	5.80 5.79 5.82 5.79 7.00 6.39 6.24 4.87 4.07 4.05 3.76 3.44 2.89	442 445 445 435 345 274 261 219 181 180 159 147 138 130	0 10 20 30 50 75 100 125 150 200 250 300 400 500	(16.16) 16.16 15.89 11.80 9.05 8.20 7.51 7.29 6.73 5.95 5.47 5.13 (4.69)	(32.06) 32.02 32.05 32.14 32.55 32.63 33.17 33.54 33.75 33.88 33.91 33.92 34.02 (34.10)	(5.80) 5.81 5.80 6.98 6.40 6.18 4.64 4.06 3.81 3.40 3.08 2.55 1.32 (0.77)	(23.48) 23.45 23.53 24.43 25.22 25.41 25.89 26.22 26.42 26.60 26.72 26.79 26.91 (27.02)	(442) 445 437 351 276 258 212 181 162 145 133 127 116 (105)	(0.00) 0.04 0.09 0.13 0.19 0.26 0.32 0.37 0.41 0.49 0.56 0.66 0.63 0.75 (0.87)	
331 405 480	5.30 5.12 4.80	33.94 34.03 34.09	2.08 1.29 0.82	123 115 106								
July 12, BT seria		46 GCT, 2	215 GCT;	47°46'N.	, 128°45	'W.; wire	angle, C	6°, 12°;	drift bo	ottles, 1	2;	H-3
1 6 12 26 36 61 90 116	16.02 16.00 15.78 12.85 11.13 8.66 7.96 7.60 7.28	32.39 32.38 32.41 32.50 32.56 32.62 32.65 32.90 33.44	5.81 5.73 5.86 7.05 6.58 6.56 6.32 5.72 4.80	415 415 409 343 308 265 253 230 185	0 10 20 30 50 75 100 125	(16.02) 15.86 15.13 12.10 9.42 8.22 7.80 7.48 7.25	(32.39) 32.40 32.44 32.53 32.61 32.63 32.70 33.04 33.54	(5.81) 5.80 6.20 6.85 6.57 6.47 5.15 5.47	(23.76) 23.80 23.99 24.68 25.20 25.40 25.52 25.83 26.26	(415) 411 392 328 277 258 247 218 177	(0.00) 0.04 0.08 0.12 0.18 0.25 0.31 0.37 0.42	
137 ² / 181 225 259 313 377 476 564 640	7.38 7.10 6.34 5.82 5.25 4.79 4.44 4.23 4.07	33.25 33.83 33.90 33.90 33.91 33.96 34.05 34.13 34.18	5.28 4.34 3.87 3.42 2.72 1.82 1.09 0.60 0.44	201 153 139 133 125 116 106 98 92	200 250 300 400 500 600	6.81 5.93 5.36 4.68 4.38 4.15	33.89 33.89 33.90 33.99 34.08 34.16	4.15 3.50 2.89 1.59 0.92 0.50	26.59 26.71 26.78 26.93 27.04 27.12	145 134 127 113 103 95	0.50 0.57 0.64 0.76 0.87 0.98	

Alternate value, 6.89 ml./l.; not used.
Overlapping casts; reconciliation of property curves when necessary.

TABLE 2.--Tabulated hydrographic station data--Continued

			OBSER	VED			INTERPO	LATED		CC	MPUTED		
ı	Depth	T.	s.	02	δ _T 10cm/g	Depth	T.	s.	02	σ_{t}	δ _T	ΔD	
ı	m.	°C.	%。	ml./l.	10cm/g.	m.	°C.	‰	mL/1.	g./l.	10cm./g.	dyn.m.	
•	BT seria	l no. 7.	52 GCT , 2										H-4
	1 6 11 21 31 51 71 95 125	15.01 14.98 15.00 14.96 12.96 10.65 9.41 8.36 7.55	32.58 32.62U 32.58 32.59 32.58 32.56 32.61 32.87 33.34	5.83 5.76 5.80 5.84 6.73 6.46 6.10 5.33 4.78	379 - 379 378 340 301 277 242	0 10 20 30 50 75 100 125 150 200	(15.01) 15.00 14.97 13.25 10.73 9.22 8.17 7.58 7.48 6.92	(32,58) 32,58 32,59 32,58 32,56 32,64 32,96 33,43 33,68 33,86	(5.83) 5.79 5.84 6.70 6.48 6.00 5.17 4.62 4.36 3.60	(24.13) 24.13 24.14 24.49 24.95 25.26 25.67 26.12 26.33 26.55	(380) 380 378 345 302 272 233 190	(0.00) 0.04 0.08 0.11 0.18 0.25 0.31 0.37 0.41 0.49	
	122 ³ / 153 187 217 266 315 391 470 561	7.62 7.46 6.92 6.93 6.04 5.52 4.81 4.54 4.30	33.52 33.70 33.84 33.88 33.91 33.94 34.01 34.08 34.14	4.46 4.33 3.98 3.55 3.06 2.36 1.49 0.82 0.54	184 168 151 148 134 126 113 105 98	250 300 400 500	6.32 5.68 4.77 4.47	33.90 33.93 34.02 34.11	3.20 2.60 1.40 0.70	26.66 26.77 26.95 27.05	149 138 129 112 102	0.49 0.57 0.63 0.76 0.87	
		1961; 04 1 no. 8,	54 GCT , 0	532 GCT;	46°00'N.	, 130° 25	'W.; wire	angle, 0	8°, 24°;	drift bo	ottles, 0	;	H-5
	2 7 12 22 32 57 81 106 136 128 169 209 241 293 355 451 540	15.42 15.40 15.40 14.52 9.96 8.35 8.02 7.66 7.76 7.35 6.88 6.64 6.02 5.23 4.84 4.48	32.52 32.52 32.52 32.52 32.58 32.70 33.14 33.57 33.45 33.90 33.94 33.96 33.99 34.08	5.65 5.59 5.64 5.65 5.96 6.26 5.84 4.76 3.92 4.18 2.98 2.96 2.24 1.65 0.85 0.51	393 393 393 392 375 287 255 217 180 191 157 146 139 130 119 108 103	0 10 20 30 50 75 100 125 150 200 250 300 400 500	(15.42) 15.40 15.40 15.00 10.87 8.57 8.09 7.80 7.51 6.98 6.57 5.92 5.01 4.65 4.28	(32.52) 32.52 32.52 32.52 32.56 32.67 33.02 33.41 33.74 33.88 33.95 33.96 34.04 34.09 34.14	(5.65) 5.63 5.65 5.78 6.22 5.92 5.06 4.25 3.31 2.97 2.31 2.20 1.12 0.67	(23.99) 24.00 24.00 24.00 24.08 24.92 25.38 25.73 26.08 26.38 26.56 26.56 26.76 26.94 27.02 27.10	(393) 392 392 384 304 260 227 194 166 148 138 129 113 105 98	(0.00) 0.04 0.08 0.12 0.19 0.32 0.37 0.42 0.57 0.64 0.76 0.88 0.98	
	BT serial	l no. 10.	34.16 ²⁷ 17 GCT, 21										н-6
	3 8 13 23 33 53 73 98 128	16.85 16.82 16.60 16.07 13.95 10.14 8.97 8.29 7.33	32.21 32.20 32.30 32.40 32.48 32.55 32.58 32.86 33.57	5.49 5.49 5.48 5.54 6.09 6.78 6.05 5.24 4.26	446 446 434 415 366 293 273 242	0 10 20 30 50 75 100 125	(16.85) 16.79 16.29 14.90 10.59 8.91 8.21 7.36 7.30	(32.21) 32.21 32.38 32.46 32.55 32.59 32.90 33.50 33.78	(5.49) 5.49 5.51 5.82 6.78 5.98 5.18 4.40 4.11	(23.43) 23.45 23.69 24.06 24.96 25.27 25.62 26.21 26.44	(446) 445 421 386 300 271 238 182 160	(0.00) 0.04 0.09 0.13 0.20 0.27 0.33 0.39 0.43	
	124 159 193 229 272 332 407 482 561	7.37 7.26 6.74 6.32 5.84 5.72 5.33 4.95 4.62	33.47 33.84 33.91 33.93 33.94 34.04 34.09 34.16 34.20	4.46 4.01 3.32 3.06 2.62 1.28 0.85 0.59 0.40	184 155 143 136 130 121 113 103 97	200 250 300 400 500	6.65 6.04 5.79 5.37 4.86	33.92 33.93 33.98 34.08 34.18	3.26 2.87 1.90 0.98 0.54	26.64 26.72 26.80 26.93 27.06	141 133 126 114 101	0.51 0.58 0.64 0.77 0.88	

Overlapping casts; reconciliation of property curves when necessary.

Salinity samples at 540 and 615 meters appear to have been reversed; they are assumed to be in the order listed above.

TABLE 2.--Tabulated hydrographic station data--Continued

		OBSER	VED			INTERPO	LATED		CC	MPUTED		
Depth	T.	s.	02	δ _T 10cm./g	Depth	T.	s.	02	σ_{t}	δ _T	ΔD	
m.	°C.	%。	ml/l.	10čm./g	m,	°C.	%	ml/1.	g./l.	10cm./g	dyn.m.	
July 15, BT serial	1961; 052 . no. 12.	28 GCT, 05	56 GCT;	45°58'n.,	128°10'	W.; wire	angle, 00	°, 05°;	drift bot	ttles, 12);	H-7
1 6 11 21 31 51 71 96 126	17.33 17.32 17.26 14.44 13.72 10.16 9.03 8.16 7.54	31.38 31.38 31.55 32.49 32.48 32.54 32.58 32.97 33.66	5.34 5.41 5.41 5.35 6.17 6.44 6.14 4.80 3.12	518 517 503 375 361 294 274 232	0 10 20 30 50 75 100 125 150 200	(17.33) 17.28 14.55 13.74 10.35 8.87 8.06 7.56 7.16 6.56	(31.38) 31.46 32.49 32.48 32.53 32.60 33.64 33.64 33.84 33.93	(5.34) 5.41 5.33 6.15 6.43 6.02 4.48 3.18 2.76 2.51	(22.69) 22.76 24.16 24.32 24.99 25.28 25.78 26.29 26.51 26.66	(517) 510 377 362 298 270 222 174 154 139	(0.00) 0.05 0.10 0.13 0.20 0.27 0.33 0.38 0.42 0.50	
135 170 210 245 300 354 439 525 610	7.37 6.92 6.44 6.09 5.62 5.42 5.02 4.45 4.28	33.77 33.89 33.94 33.96 33.98 34.03 34.09 34.14 34.20	2.84 2.67 2.46 1.97 1.64 1.18 0.84 0.68 0.42	162 147 137 131 124 118 109 99	250 300 400 500 600	6.04 5.62 5.23 4.59 4.30	33.97 33.98 34.07 34.12 34.20	1.92 1.64 0.97 0.73 0.45	26.76 26.82 26.93 27.05 27.14	130 124 113 102 93	0.57 0.63 0.75 0.87 0.97	
July 15, BT serial	1961; 210	06 GCT, 21	40 GCT;	46°00'N.,	12 7° 02'	W.; wire	angle, 16	°, 27°;	drift bot	ttles, 12	!;	н-8
1 6 10 20 30 49 68 92 121	18.06 18.02 16.36 14.12 12.96 10.27 9.24 8.38 7.90	29.39 29.41 31.39 32.58 32.57 32.65 32.66 32.86 33.45	5.46 5.52 5.69 6.24 6.52 6.34 6.18 5.51 4.30	679 676 495 362 340 288 271 243	0 10 20 30 50 75 100 125 150	(18.06) 16.36 14.12 12.96 10.23 8.94 8.20 7.80 7.43	(29.39) 31.39 32.58 32.57 32.65 32.68 33.00 33.54 33.75	(5.46) 5.69 6.24 6.52 6.33 6.03 5.17 4.19 3.86	(21.00) 22.92 24.32 24.54 25.10 25.33 25.70 26.18 26.40	495 362 340 287 265 230 185 164	(0.00) 0.06 0.10 0.14 0.20 0.27 0.33 0.38 0.43	
128 168 210 242 292 352 446 532 607	7.73 7.17 6.66 6.23 5.63 5.44 4.96 4.52 4.36	33.60 33.84 33.92 33.95 33.97 34.03 34.09 34.15 34.21	4.11 3.56 2.78 2.30 2.12 1.29 0.81 0.51 0.42	179 154 141 134 125 119 108 100 93	200 250 300 400 500 600	6.79 6.11 5.60 5.22 4.66 4.36	33.91 33.95 33.98 34.06 34.12 34.20	2.98 2.27 2.06 1.01 0.60 0.43	26.61 26.73 26.82 26.93 27.04 27.13	144 132 124 114 103 94	0.51 0.58 0.64 0.76 0.88 0.98	
July 16, BT serial	1961; 053	3 GCT, 06	000 GCT;	46°00'N.,	125°53"	W.; wire	angle, 00	°, 00°;	lrift bot	tles, 12	;	Н-9
1 6 11 21 31 51 71 96 126	17.44 17.42 17.42 13.46 10.96 9.94 9.86 9.82 9.56	30.90 30.92 30.90 32.21 32.56 32.76 32.93 33.24 33.45	5.34 5.36 5.39 6.22 6.65 5.17 4.84 4.38 3.64	555 553 554 377 305 275 260 236 217	0 10 20 30 50 75 100 125	(17.44) 17.42 13.80 11.05 9.94 9.85 9.80 9.57 8.72	(30.90) 30.90 32.14 32.56 32.75 32.99 33.29 33.44 33.60	(5.34) 5.38 6.00 6.66 5.20 4.77 4.27 3.66 3.29	(22.30) 22.30 24.04 24.89 25.23 25.43 25.67 25.83 26.09	554 388 307 275 256 233 218 193	(0.00) 0.06 0.10 0.14 0.20 0.26 0.32 0.38 0.43	
136 170 210 245 300 354 440 525 610	9.38 7.96 7.25 6.56 6.12 5.86 5.37 5.06 4.76	33.48 33.77 33.90 33.98 34.01 34.04 34.10 34.16 34.21	3.58 2.86 2.45 1.89 1.53 1.29 0.85 0.57	212 170 150 136 128 123 112 105 98	200 250 300 400 500 600	7.42 6.49 6.12 5.58 5.14 4.80	33.88 33.98 34.01 34.08 34.14 34.20	2.54 1.85 1.53 1.01 0.64 0.42	26.50 26.71 26.78 26.90 27.00 27.09	154 135 128 116 107 99	0.52 0.59 0.66 0.79 0.91 1.01	

TABLE 2. -- Tabulated hydrographic station data--Continued

		OBSER	VED			INTERPO	LATED		CC	MPUTED		
Depth	T.	s.	02	δ _T 10cm./g.	Depth	T.	s.	02	$\sigma_{\mathbf{t}}$	δ _T	ΔD	
m,	°C.	%。	ml/l.	10cm./g	m.	°C.	‰	ml/1.	g./1.	10cm/g	dyn.m.	
	1961; 18 1 no. 17.		911 GCT;	46°00'N.	, 125°31	'W.; wire	angle, C	2°, 05°;	drift bo	ottles, l	.2;	H-10
1 6 11 21 31 51 71 96 126	17.70 17.69 17.64 14.84 12.11 10.72 9.94 9.52 8.90	30.18 30.17 30.21 31.93 32.39 32.59 32.67 32.85 33.46	5.44 5.42 5.41 6.09 6.44 6.66 5.42 5.10 3.65	613 613 610 424 349 300 281 261 207	0 10 20 30 50 75 100 125 150 200	(17.70) 17.66 15.10 12.90 10.76 9.89 9.44 8.91 8.31 7.33	(30,18) 30,20 31,78 32,37 32,58 32,70 32,93 33,44 33,68 33,88	(5.44) 5.41 6.00 6.40 6.65 5.34 4.94 3.68 3.12 2.60	(21.68) 21.71 23.49 24.40 24.96 25.20 25.45 25.93 26.21 26.51	(613) 611 440 354 301 278 254 208 181	(0.00) 0.06 0.11 0.15 0.22 0.29 0.36 0.42 0.47	
139 183 228 263 316 380 479 569	8.56 7.62 6.95 6.54 6.07 5.64 5.20 4.74 4.48	33.61 33.84 33.94 33.99 34.02 34.07 34.14 34.220 34.21	3.32 2.67 2.46 1.97 1.53 1.07 0.73 0.42 0.47	190 160 144 135 126 117 107	250 300 400 500 600	1.33 6.69 6.20 5.56 5.10 4.62	33.97 34.02 34.08 34.16 34.19	2.17 1.63 1.00 0.64 0.44	26.67 26.77 26.90 27.02 27.10	138 128 116 105 97	0.63 0.69 0.82 0.94 1.04	
			605 GCT;	44°59'N.	, 125°30	'W.; wire	angle, C	3°, 07°;	drift b	ottles, 1	.2;	H-11
1 6 11 21 31 51 71 96 126 138 163 192 227 271 331	1 no. 19. 18.17 18.16 17.82 12.84 11.12 9.90 9.32 9.01 7.60 7.38 7.10 6.47 6.12	29.46 29.44 29.88 32.33 32.52 32.61 32.72 33.20 33.56 33.89 33.89 33.99 34.06	5.26 5.29 5.28 6.22 6.50 5.69 5.44 4.21 3.68 3.70 3.32 2.46 1.92	677 677 638 356 311 284 267 227 184 171 159 149 140 133 124	0 10 20 30 50 75 100 125 150 200 250 300 400 500	(18.17) 18.00 13.15 11.19 9.98 9.29 8.92 7.50 7.01 6.60 6.30 5.68 5.24	(29.46) 29.74 31.95 32.51 32.60 32.78 33.56 33.75 33.90 33.97 34.03 34.16	(5.26) 5.28 6.15 6.50 5.75 5.33 4.02 3.68 3.57 2.83 2.19 1.70 1.13 0.65	(21.03) 21.28 24.03 24.83 25.10 25.36 25.80 26.18 26.39 26.57 26.68 26.77 26.89 27.00	(676) 652 389 313 287 263 221 185 165 147 137 128 117	(0.00) 0.07 0.12 0.15 0.21 0.28 0.39 0.44 0.52 0.59 0.66 0.79	
405 4 7 9 559	5.66 5.34 4.99	34.09 ² / 34.15 ² / 34.20 ² /	0.72 0.56	117 108 101								
July 17,					, 125°29	'W.; wire	angle, C	8°, 16°;	drift b	ottles, l	.2;	H-12
1 6 11 21 30 55 81 105	17.20 17.14 15.20 10.71 10.00 8.89 8.74 8.10 7.60	30.08 30.10 30.52 32.28 32.49 32.67 32.21 33.62 33.83	5.58 5.66 6.18 6.04 6.18 5.43 4.13 3.02 2.72	610 607 535 322 295 265 297 183 160	20 30 50 75 100 125 150	15.80 11.78 10.00 9.05 8.77 8.22 7.73 7.38	32.05 32.49 32.63 33.09 33.56 33.77 33.90	6.16 6.06 6.18 5.61 4.41 3.18 2.81 2.55	22.26 24.36 25.02 25.28 25.68 26.13 26.37 26.52	558 357 295 270 232 189 167	(0.00) 0.06 0.10 0.14 0.19 0.26 0.31 0.35 0.39	
143 167 200 232 286 338 420 503 587	7.45 7.18 6.86 6.49 6.04 5.74 5.38 5.00 4.70	33.87 33.94 33.99 34.00 34.03 34.13 34.16 34.23	2.66 2.35 2.01 1.81 1.70 1.16 0.86 0.53 0.40	155 146 139 133 125 118 110 104	200 250 300 400 500 600	6.86 6.32 5.96 5.47 5.02 (4.66)	33.99 34.01 34.04 34.12 34.15 (34.25)	2.01 1.77 1.60 0.94 0.55	26.66 26.75 26.82 26.94 27.02 (27.14)	139 130 124 112 105 (93)	0.47 0.54 0.60 0.72 0.84 (0.94)	

^{5/} Salinity samples at 405, 479 and 559 meters appear to have been reversed; they are assumed to be in the order listed above.

TABLE 2.-- Tabulated hydrographic station data--Continued

		OBSER	VED			INTERPO	LATED		cc	MPUTED		
Depth	T.	S.	02	δ _T	Depth	T.	s.	02	$\sigma_{\mathbf{t}}$	δ _T	ΔD	
m.	°C.	%。	ml/1.	^δ T 10cm./g.	m.	°C.	‰	ml/1.	g./1.	10cm./g	dyn.m.	
July 18,	1961; 05	35 GCT, 0	601 GCT;	43°18'N.	, 125°32	'W.; wire	angle, (08°, 06°;	drift b	ottles, l	2;	н-13
BT seria	11 no. 23. 15.09	32.24	5.69	406	0	(15.09)	(32.24)	(5.69)	(23.85)	(406)	(0.00)	
6 11	15.08 14.70	32.24 32.26	5.73 5.85	406 39 7	10 20	14.95 11.53	32.24 32.64	5.82 6.16	23.88 24.87	403 309	0.04	
21 31	11.42 10.37	32.64 32.74	6.16 5.49	307 283	30 50	10.48	32.73 32.95	5.59 4.29	25.12 25.52	285 247	0.11	
56 80	9.05	32.97	4.21	245	75	8.68	33.34	3.40	25.89	212	0.22	
105	8.54 7.95	33.42 33.69	3.25 3.00	204 175	100 125	8.06 7.61	33.65 33.81	3.05 2.68	26.23 26.42	180 162	0.27	
135	7.49	33.86	2.53	157	150 200	7.31 6.50	33.91 33.96	2.39 2.34	26.54 26.69	150 136	0.35	
149 173	7.32 6.99	33.91 33.95	2.40	151 143	250 300	6.30 5.92	34.02 34.05	1.65 1.31	26,76 26.83	129 122	0.49	
208 242	6.42 6.35	33.96 34.01	2.35	135 131	400 500	5.29 4.82	34.11 34.18	0.83	26.96 27.07	111	0.68	
296	5.96	34.04	1.33	123	600	4.52	34.25	0.36	27.16	92	0.89	
350 436	5.56 5.11	34.08 34.12	1.02 0.72	116 108								
520 605	4.76 4.50	34.20 34.26	0.42 0.35	98 91								
July 19,	1961; 22	40 GCT, 2	304 GCT;	42°00'N.	, 125°30	'W.; wire	angle, 0	9°, 26°;	drift bo	ottles, l	2;	H-14
BT seria 1	1 no. 25.	31.69	5.12	488	0	(17.04)	(31.69)	(5.12)	(22.99)	(488)	(0.00)	
11 31	16.95 14. 7 2	31.70 32.69	5.40 5.77	486 365	10 20	16.96 16.86	31. 7 0 31. 7 2	5.39 5.53	23.02	486 482	0.05	
40 51	11.61 10.92	32.79 32.80	6.34	300 287	30 50	14.82	32.67 32.80	5.73 6.16	24.24	369 288	0.14	
65	10.12	32.81	5.88	273	7 5	9.89	32.81	5.86	25.28	270	0.28	
80 100	9.76 9.19	32.81 33.02	5.84 5.19	268 243	100 125	9.19 8.36	33.02 33.32	5.19 4.57	25.56 25.92	243 209	0.34	
125 -6/	8.30	33.34	4.59	207	150 200	7.99 7.50	33.68 33.88	3.82 3.32	26.26 26.49	1 7 7 155	0.45	
138 <u>6</u> / 163	8.19 7.85	33.54 33.77	4.08 3.66	190 1 <i>6</i> 8	250 300	6.9 7 6.53	33.95 34.00	2.51 1.93	26.62 26.72	143 134	0.61	
194 221	7.54 7.28	33.87 33.92	3.40 2.90	156 149	400 500	5.84 (5.31)	34.06 (34.13)	1.20	26.85 (26.97)	121 (109)	0.81 (0.93)	
265 314	6.82 6.42	33.96 34.01	2.35	140 131		()-5-7	(3.11-37		(201) /	(20)/	(0.)37	
391	5.88	34.05	1.27	122								
470 553	5.48 5.00	34.11 34.01 U	0.84 0.83 u	113								
July 20,	1961; 213	36 GCT , 2	201 GCT;	42°00'N.	, 127°04	W., wire	angle, 0	5°, 10°;	drift bo	ttles, l	2;	H-15
1	16.54	32.68 32.68	5.40 5.42	405	0 10	(16.54) 16.46	(32.68)	(5.40)	(23.86)	(405)	(0.00)	
31	15.34	32.71	5.54	403 377	20	16.28	32.68	5.44	23.92	399	0.04	
41 56	13.92	32.74 32.76	5.78 6.11	346 316	30 50	15.38 12.95	32.71 32.75	5.53 6.02	24.15 24.68	378 327	0.12	
71. 96	10.78 9.84	32 .7 7 32 . 88	5.95 5.38	287 263	75 100	10.59 9 .7 5	32 .7 8 32 . 92	5.86 5.27	25.14 25.39	283 259	0.27	
115 135	9.48 8.89	33.10 33.47	4.85 3.94	242 206	125 150	9.12 8. 7 2	33.32 33.59	4.30 3.62	25.81 26.08	220 194	0.40	
156	8.64	33.64	3.49	189	200 250	7.62 6.83	33.91 33.98	2.82	26.49 26.66	155 139	0.54	
180 214	8.03 7.36	33.84 33.94	2.97	165 149	300 400	6.28 5.45	33.98 34.06	2.21	26.73	132	0.68	
243	6.91	33.98	2.42	140	500	5.08	34.14	0.76	26.90	116	0.81	
291 345	6.40 5. 7 4	33.98 34.01	2.30	133 123	600	(4.70)	(34.20)	(0.48)	(27.10)	(97)	(1.03)	
429 514	5.34 5.02	34.08 34.15	0.69	113 105								
598	4.72	34.19	0.48	98								

Double casts; reconciliation of property curves when necessary.

TABLE 2.--Tabulated hydrographic station data--Continued

		OBSER	VED			INTERPO	LATED		CC	MPUTEL		
Depth	T.	S.	02	δT	Depth	T.	s.	02	σ_{t}	δ _T	ΔD	
m.	°C.	%。	ml/1.	10cm./g	m.	°C.	%	mL/1.	g./1.	10cm./g	dyn.m.	
	1961; 05: 1 no. 29,	48 GCT, 00 29a.	615 GCT;	41°59'N.	, 128°06	'W.; wire	angle, 0	3°, 15°;	drift bo	ottles, 0	;	H-16
1 11 31 41 56 71 96 115	17.04 17.01 15.38 14.74 12.16 10.52 9.72 9.35 8.70	32.35 32.35 32.70 32.74 32.77 32.76 33.01 33.26 33.52	-	440 439 379 363 311 283 252 228 199	0 10 20 30 50 75 100 125 150 200	(17.04) 17.01 16.57 15.44 13.48 10.34 9.64 9.02 8.57 7.95	(32.35) 32.35 32.45 32.69 32.76 32.78 33.07 33.39 33.59 33.88		(23.50) 23.50 23.68 24.12 24.58 25.18 25.53 25.88 26.10 26.42	(440) 439 422 381 336 279 247 213 192 161	(0.00) 0.04 0.09 0.13 0.20 0.28 0.34 0.40 0.45 0.54	
154 183 217 245 295 348 431 514 598	8.54 8.26 7.69 7.46 6.96 6.38 5.77 5.34 4.87	33.60 33.83 33.92 33.96 34.00 34.03 34.08 34.13 34.20	-	191 170 155 149 139 130 118 110	250 300 400 500 600	7.41 6.90 5.97 5.42 (4.85)	33.96 34.00 34.07 34.12 (34.20)	:	26.56 26.67 26.84 26.95 (27.08)	148 138 121 111 (99)	0.62 0.69 0.83 0.95 (1.06)	
July 21, BT seria		05 GCT, 21	130 GCT;	42°00'N.	, 129°20	'W.; wire	angle, 0	9°, 27°;	drift bo	ttles, 1	2;	H-17
2 12 32 41 56 71 96 115 135	16.36 16.38 15.56 15.04 12.44 10.90 9.66 9.02 8.56 8.18 7.77 7.30	32.81 32.80 32.78 32.79 32.79 32.84 33.18 33.44	5.53 5.58 5.68 5.69 6.32 5.95 4.63 4.02 3.89 3.56 3.10 2.72	392 392 376 365 315 284 239 210	0 10 20 30 50 75 100 125 150 200 250 300 400	(16.36) 16.38 16.36 15.58 13.23 10.62 9.50 8.77 8.37 7.50 6.84 6.35 5.51	(32.81) 32.80 32.80 32.78 32.78 32.88 33.26	(5.53) 5.57 5.62 5.66 6.10 5.74 4.47 3.94 3.75 2.46 2.08 1.20	(24.00) 23.99 24.00 24.16 24.65 25.21 25.70	(391) 393 392 377 330 276 230 - - -	(0.00) 0.04 0.08 0.12 0.19 0.26 0.33	
241 287 346 438 525 599	6.95 6.48 5.91 5.28 4.87 4.58	-	2.52 2.19 1.62 0.99 0.57 0.37	-	500 600	4.98 (4.57)	Ξ	0.67 (0.37)	Ξ.	-	Ξ	
July 22, BT serial	l no. 32.	27 GCT, 05	550 GCT;	42°00'N.	, 130°30		angle, 0		drift bo	ttles, 1	2;	H-18
1 11 31 41 56 70 95 115 135	16.20 16.13 12.73 12.08 11.08 10.54 9.85 9.18 8.94	32.92 32.93 33.09 33.38	5.24 5.40 6.28 6.36 6.05 5.78 5.63 5.42 5.07	272 260 238 213	0 10 20 30 50 75 100 125 150 200	(16.20) 16.15 14.95 12.94 11.47 10.40 9.68 9.03 8.81 8.32	32.92 32.94 33.28 33.49 33.89	(5.24) 5.37 5.80 6.26 6.20 5.73 5.58 5.22 4.93 4.58	25.28 25.42 25.79 25.99 26.38	- - - 270 257 222 203 166		
152 181 215 245 294 348 432 516 600	8.78 8.46 8.20 7.76 6.74 5.85 3.96 4.45 4.10	33.51 33.80 33.93 33.96 33.94 33.93 33.98 34.05 34.14	4.91 4.73 4.46 4.05 3.76 3.10 2.04 1.17 0.66	201 174 161 153 141 130 106 106 96	250 300 400 500 600	7.65 6.63 5.23 4.52 4.10	33.95 33.95 33.96 34.04 34.14	4.00 3.70 2.44 1.30 0.66	26.52 26.66 26.85 26.99 27.11	152 139 121 108 96	-	

TABLE 2.--Tabulated hydrographic station data--Continued

		OBSER	VED			INTERPO	LATED		CC	MPUTEI		
Depth	T.	s.	02	δ _T	Depth	T.	s.	02	σ_{t}	δ _T	ΔD	
m.	°C.	%。	ml./1.	10cm./g	m.	°C.	%0	ml/1.	g./1.	10cm/g	dyn.m.	
BT seria	1 no. 33.											H-19
2 12 32 41 56 81 95 115	16.11 16.08 14.56 13.33 11.76 10.05 9.80 9.41 9.11	32.85 32.87 32.87 32.84 32.85 32.86 32.88 32.88	5.61 5.60 5.91 6.39 6.75 6.04 5.94 5.92 5.74	383 381 350 327 298 269 263 257 245	0 10 20 30 50 75 100 125 150 200	(16.11) 16.08 16.08 14.77 12.30 10.23 9.70 9.25 8.78 8.35	(32.85) 32.87 32.87 32.85 32.85 32.85 32.88 32.90 33.24 33.90	(5.61) 5.60 5.60 5.83 6.67 6.12 5.94 5.86 5.44 4.71	(24.09) 24.11 24.11 24.40 24.89 25.26 25.37 25.46 25.80 26.38	(383) 381 381 354 308 272 262 253 221 166	(0.00) 0.04 0.08 0.11 0.18 0.25 0.32 0.38 0.44 0.54	
159 187 224 252 299 360 455 542 615	8.62 8.40 8.24 7.96 7.00 5.83 4.85 4.43 4.28	33.43 33.82 33.97 33.98 33.96 33.96 34.06 34.00U	5.24 4.79 4.53 4.18 3.84 3.23 1.90 1.29 0.96	204 172 159 154 143 130 117	250 300 400 500 600	7.99 6.99 5.33 4.60 4.30	33.98 33.96 33.94 34.00	4.21 3.83 2.60 1.62 1.03	26.50 26.62 26.82 26.95	155 142 124 111 -	0.62 0.70 0.84 0.96	
	1961; 18 1 no. 35.	55 GCT, 1	918 GCT ;	43°00'N.	, 132°00	'W.; wire	angle, 0	3°, 10°;	drift b	ottles, ();	H-20
1 11 31 41 56 71 96 116 135	15.72 15.62 12.55 11.38 10.26 9.84 9.48 9.04 8.70 8.56 8.26 8.06	32.84 32.84 32.82 32.84 32.89 32.87 32.91 33.02 33.34 33.52 33.74 33.90	5.45 5.55 6.53 6.53 5.87 5.82 5.73 5.58 5.26 5.08 4.84	376 373 314 292 270 264 256 241 212 197 176 161	0 10 20 30 50 75 100 125 150 200 250 300	(15.72) 15.63 15.57 12.65 10.63 9.77 9.40 8.85 8.59 8.17 7.37 6.35 5.13	(32.84) 32.84 32.84 32.89 32.87 32.93 33.15 33.49 33.83 33.93 33.91 33.96	(5.45) 5.53 5.56 6.51 6.08 5.71 5.44 5.12 4.66 4.01 3.50 2.27	(24.17) 24.19 24.21 24.80 25.22 25.35 25.46 25.72 26.02 26.35 26.67 26.86	(376) 374 372 316 276 263 253 229 200 168 150 138 120	(0.00) 0.04 0.07 0.11 0.17 0.24 0.30 0.36 0.42 0.51 0.59 0.66 0.80	
248 297 352 435 519 603	7.42 6.40 5.63 4.85 4.44 4.13	33.93 33.91 33.92 33.99 34.05 34.09	4.03 3.51 2.87 1.90 1.04 0.93	150 139 128 115 106 100	500 600	4.51 4.14	34.04 34.09	1.15 0.94	26.99 27.07	107 100	0.92 1.03	
BT serial	l no. 37.	36 GCT , 0										H-21
1 11 31 41 56 71 96 115	15.83 15.83 14.32 12.46 10.52 9.24 8.58 8.15 7.81	32.77 32.74 32.72 32.71 32.73 32.74 32.98 33.29	5.48 5.60 6.15 6.53 6.50 6.17 6.04 5.29 4.83	383 383 354 320 287 266 255 231 203	0 10 20 30 50 75 100 125 150	(15.83) 15.83 15.71 14.45 11.30 9.18 8.49 7.97 7.70	32.77 32.76 32.74 32.72 32.73 32.77 33.14 33.51	(5.48) 5.59 5.67 6.10 6.52 6.16 5.97 5.02 4.53	(24.09) 24.09 24.11 24.37 24.97 25.34 25.47 25.84 26.17	(383) 383 381 357 300 265 252 217 185	(0.00) 0.04 0.08 0.11 0.18 0.25 0.32 0.37 0.42	
155 184 219 248 297 352 436 520 605	7.67 7.46 6.76 6.38 5.80 5.47 4.89 4.50 4.24	33.57 33.79 33.89 33.91 33.92 33.98 34.05 34.12 34.19	4.44 4.09 3.58 3.36 2.84 1.73 1.12 0.72 0.48	180 161 144 138 130 122 111 101 94	200 250 300 400 500 600	7.14 6.35 5.78 5.10 4.58 4.25	33.86 33.91 33.93 34.02 34.11 34.18	3.81 3.35 2.78 1.36 0.80 0.50	26.52 26.67 26.76 26.91 27.04 27.13	152 138 130 115 103 94	0.51 0.58 0.65 0.78 0.89 1.00	

TABLE 2.-- Tabulated hydrographic station data-- Continued

		OBSER	VED			INTERPO	LATED		CC	MPUTED		
Depth	T.	S.	02	δ _T 10cm./g.	Depth	T.	S.	02	σ_{t}	δT	ΔD	
m.	°C,	%。	ml./l.	10cm./g.	m.	°C,	‰	ml/l.	g./l.	10cm./g	dyn.m.	
July 24, BT seria		50 GCT, 21	112 GCT;	44°00'N.	,130°56'	W.; wire	angle, 08		lrift bot	tles, 0;		H-22
2 12 32 42 56 71 96 116 136	16.03 16.00 12.48 10.08 9.55 9.10 8.66 8.28 7.84	32.81 32.80 32.68 32.73 32.76 32.75 32.74 33.04 33.48	5.54 5.64 7.01 6.56 6.19 6.12 5.99 5.41 4.21	384 384 324 278 268 262 256 228 190	0 10 20 30 50 75 100 125 150 200	(16.03) 16.01 16.00 14.20 9.79 9.00 8.60 8.10 7.57 6.96	(32,81) 32.80 32.80 32.72 32.75 32.74 32.74 33.28 33.69 33.92	(5.54) 5.64 5.64 6.48 6.35 6.08 5.97 4.78 3.64 2.70	(24.08) 24.08 24.08 24.41 25.25 25.37 25.43 25.93 26.33 26.60	(384) 385 384 353 273 261 255 208 170 145	(0.00) 0.04 0.08 0.11 0.18 0.24 0.31 0.37 0.41	
167 196 235 265 314 377 475 564 638	7.30 7.00 6.59 6.45 6.04 5.62 5.04 4.50 4.34	33.85 33.91 33.95 33.98 34.03 34.05 34.12 34.16 34.15U	3.13 2.72 2.36 1.94 1.54 1.10 0.69 0.50	155 146 138 134 126 119 107 98	250 300 400 500 600	6.51 6.16 5.50 4.87 4.39	33.97 34.02 34.07 34.14	2.18 1.66 1.00 0.60	26.70 26.78 26.90 27.03	136 128 116 104	0.57 0.63 0.76 0.88	
July 25, 2 12 37 46 61 76 101 120 140	1961; 05: 16.20 16.21 13.11 11.47 10.10 9.56 9.14 8.62 8.13	47 GCT; 44 32.84 32.81 32.72 32.75 32.75 32.77 32.77 32.77 32.87 33.20	4°01'N., 5.71 5.87 7.10 6.92 6.57 6.44 6.40 5.88 5.19	129°51'W 386 388 332 301 275 268 261 246 214	0; wire 0 10 20 30 50 75 100 125 150	angle, 09 (16.20) 16.20 16.20 14.85 10.77 9.59 9.16 8.50 (7.90)	°; drift (32.84) 32.81 32.76 32.78 32.77 32.77 32.97 (33.27)	bottles, (5.71) 5.86 5.88 6.48 6.75 6.43 6.41 5.67	0; BT se (24.06) 24.04 24.04 24.30 25.11 25.30 25.37 25.63 (2>.95)	erial no. (386) 388 388 363 286 268 261 237 (206)	41. (0.00) 0.04 0.08 0.12 0.18 0.25 0.32 0.38 (0.44)	н-23
July 25, 2 12 32 41 56 71 96 115	1961; 21 ¹ 16.83 16.82 15.35 13.98 11.94 10.56 9.77 9.39 8.73	43 GCT; 44 32.04 32.02 32.73 32.73 32.74 32.80 32.98 33.16 33.43	4°02'N., 5.81 5.86 6.17 6.37 6.87 6.39 5.54 5.12 4.58	128° 42'W 458 459 376 348 309 282 255 236 206	0 10 20 30 50 75 100 125	angle, 09 (16.83) 16.82 16.81 15.37 12.32 10.34 9.69 9.10	°; drift (32.04) 32.03 32.03 32.73 32.73 32.83 33.02 33.29	bottles, (5.81) 5.84 5.87 6.17 6.82 6.20 5.47 4.85		serial no (458) 459 458 376 317 275 251 222	. 42. (0.00) 0.05 0.09 0.13 0.20 0.28 0.34 0.40	H-24
July 26, BT seria		48 ccr, 2	121 GCT;	44°06'N.	, 126°01	'W.; wire	angle, 1	.1°, 20°;	drift bo	ttles, 3	6;	H-25
	15.92 15.92 15.92 11.78 10.48 9.56 9.12 8.14 7.90 7.46	31.21 31.21 31.21 32.47 32.62 32.65 32.82 33.52 33.68 33.86	5.36 5.630 5.48 6.48 6.21 5.66 5.21 3.62 3.11 2.56	499 499 499 326 293 276 257 191 175	0 10 20 30 50 75 100 125 150 200	15.93 15.55 12.00 9.87 8.93 8.08 7.69 7.12 6.56	31.21 31.30 32.43 32.63 32.97 33.56 33.78 33.93 34.00	(5.36) 5.47 5.54 6.48 5.86 4.90 3.50 2.80 2.35 1.72	22.88 23.03 24.62 25.15 25.56 26.15 26.38 26.58 26.71	499 485 333 283 243 187 165 146 134	(0.00) 0.05 0.10 0.14 0.20 0.27 0.32 0.37 0.41 0.48	
160 188 224 253 300 361 456 544 617	6.96 6.65 6.42 6.30 6.06 5.90 5.56 5.20 4.88	33.96 33.98 34.02 34.04 34.05 34.07 34.12 34.11U 34.22	2.22 1.79 1.65 1.58 1.28 1.16 0.88 0.54 0.44	142 136 131 128 124 120 113	250 300 400 500 600	6.31 6.06 5.77 5.37 4.94	34.03 34.05 34.09 34.16 34.21	1.61 1.28 1.09 0.69 0.47	26.77 26.82 26.88 26.99 27.08	129 124 118 108 99	0.54 0.61 0.73 0.85 0.96	

TABLE 3.--Bathythermograph observations

Ser. Prophic Prophic Ser. S			Green	url ch	1		Sea	u.	ınd	I Atr t	Omp.			Clo	nide		C.,	1011
		Hydro-					aurface		1	Dry	Wet							
18 H-1 2025 11 h/Th25 126712	No.		Hour	Date	N.	₩.			Force				ther	Туре	Amt.	(miles)		
2														-			290	3
Bear Content 1700 12 47"45 127"33 61.2 290 2 62.5 60.8 1015 02 - 0 8 290 3														•				
3														-				_
5 - 1255 133 47"14" 130"26' 57.9 310 5 1016 10 1 8 8 4 310 \$\frac{1}{2}\$ 6 - 1775 133 47"12" 130"30" 58.0 5 5.75 57.5 57.5 1017 10 1 8 6 6 310 \$\frac{1}{2}\$ 7 8-4 2120 13 46"41" 130"45" 95.0 300 5 66.6 \$\frac{6}{2}\$ 8.8 1018 02 1 8 6 6 320 \$\frac{1}{2}\$ 8 8 8 9 0 0415 14 46"00" 130"25" 95.7 060 5 98.3 57.9 1018 02 1 8 8 7 000 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	_	-					60.6	310	5	61.2				-				
6 - 1715 13 47127 130*hor 58.5 310 5 57.5 57.5 1017 10 1 8 6 6 310 k 8 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 6 320 k 8 10 8 0 1 8 6 7 000 3 3 9 - 1705 14 46*00*1 130*25* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 46*00*1 130*25* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 45*01*1 102*5* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 45*01*1 102*5* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 9 - 1705 14 45*01*1 102*5* 59.7 080 5 58.5 57.9 1018 02 1 8 7 000 3 3 10 1 1 1 - 0130 15 45*09*1 128*00*6 61.3 310 2 61.8 59.9 1018 02 4,6.8 7 8 300 1 1 1 - 0130 15 45*09*1 128*00*1 63.3 310 2 61.0 59.9 1018 02 6 6 7 7 8 300 1 1 1 1 - 0130 15 45*09*1 128*00*1 63.3 310 2 61.0 59.9 1018 02 6 6 7 7 300 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5	H-3								61.3	60.1			1				
7 H-4	6	_					58.5			57.5	57.5							
88							59.0			60.6	58.8							
9 - 1705 14										58.3								
No.		-																
11	10	n-6	2025	7.14	1,50501	1209111	60.1	210	2	60.0	68.8	1010	00			7		1
12		-			45°591											8		-
14 B-8 2030 15 45*5*9*1 127*0°2*1 64, k 270 k 62.9 60.1 108 02 6 7 7 3100 3 16 H-9 0505 16 45*0*0*1 125*31*1 61.5 270 3 61.2 60.5 1018 02 6 7 7 3100 3 18 - 0000 17 45*35*1 125*31*1 61.7 20 6 6 7 7 310 3 18 H-11 0505 17 44*5*9*1 61.8 270 2 62.5 59.5 1022 02 6.8 2 8 310 1 20 - 0910 17 44*32*1 125*30*0 61.5 340 5 63.0 61.6 1023 02 8 2 8 260 1 21 H-12 2015 17 44*25*2*1 125*30*0 61.5		H-7					63.1				59.8					7		
15		E_8																
H-10	15	-	0155	16	45°57'	126°20'					59.9							-
18																6		
19																8		3
20		H-11	0505		44°591												310	_
21 H-12 2015 17 44°09' 125°29' 62.8 330 5 63.0 61.0 1024 02 8 7 8 280 1 22 - 2335 17 43°55' 125°30' 63.0 330 5 63.4 61.2 1024 02 8 7 8 280 1 24 - 1825 19 42°26' 125°32' 59.4 330 4 60.9 59.3 1023 02 6.8 3 8 280 1 25 H-14 2200 19 42°00' 125°12' 62.6 330 5 63.0 61.8 1022 02 4.6,8 6 8 290 - 25 H-14 2200 19 42°00' 125°29' 62.6 330 5 63.0 61.8 1022 02 6.8 7 7 280 - 26 - 1715 20 42°01' 125°12' 50 61.9 330 3 60.9 60.0 1023 15 6.8 6 7 290 - 27 H-15 2115 20 42°00' 127°36' 62.6 330 4 62.1 61.8 1022 50 0.8 8 4 330 - 29 H-16 0505 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6.8 7 7 330 - 29 H-16 0505 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6.8 7 7 330 - 29 H-16 0505 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0.6 7 5 330 - 30 - 1705 21 42°00' 128°49' 61.7 330 5 60.2 61.2 1023 02 6.8 7 7 330 1 31 H-17 2025 21 42°00' 128°49' 61.7 330 5 60.2 59.5 1023 50 6.8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6.8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 60.4 330 5 60.2 59.5 1023 50 6.8 7 7 330 1 34 - 0500 24 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 6.8 6 8 500 1 35 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 6.8 6 7 0 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 38 - 1720 24 43°30' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 39 H-22 0515 24 44°00' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 39 H-22 0515 24 44°00' 132°00' 60.4 330 5 60.0 58.7 1026 02 6.8 6 7 0 000 1 30 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1026 02 6.8 6 7 0 000 1 31 H-21 0515 24 44°00' 132°50' 61.0 340 5 60.8 59.0 1027 02 6.8 6 7 0 000 1 31 H-22 0515 24 44°00' 132°50' 61.0 340 5 60.8 59.0 1027 02 6.8 6 7 0 000 1 320 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20		0910	17	105011	1 25 9 30 1	63.5	31.0	5	62.0	61.6	1002	00	8	2	8		_
22																		
24		-						330	5	63.4	61.2				7			-
25		H-13									59.3							
27	25	H-14			42°00'	125°29'	62.6				61.8							-
28		- 15												4,6,8	6	7		-
298 H-16 0505 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6,8 7 7 330 - 298 H-16 0510 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6,8 7 7 330 - 30 - 1705 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0,6 7 5 330 - 31 H-17 2025 21 42°00' 129°20' 61.5 330 5 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 35 H-20 1820 23 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 61.0 59.0 1027 02 6 8 6 8 6 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 7 000 3 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.8 59.0 1027 02 6,8 6 7 8 000 1 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.8 59.0 1026 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 7 8 000 1 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.8 59.0 1026 02 6,8 7 8 000 1 30 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 7 8 000 1 31 H-23 0505 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6 7 7 000 6 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 -		- 17												0.8		-		3
29a H-16 0510 21 41°59' 128°06' 62.6 330 4 62.2 61.2 1023 02 6,8 7 7 330 - 30 - 1705 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0,6 7 5 330 - 31 H-17 2025 21 42°00' 129°20' 61.5 330 5 61.3 60.0 1023 25 6,8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 35 H-20 1820 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 8 6 8 350 - 35 H-20 1820 23 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 61.0 59.0 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 7 7 000 - 37 H-21 0515 24 44°00' 132°00' 60.4 330 5 60.8 59.0 1027 02 6 7 8 000 1 39 H-22 2010 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 7 7 000 - 39 H-23 0505 25 44°01' 128°51' 61.3 340 5 60.8 59.0 1026 02 6,8 6 7 7 000 - 41 H-23 0505 25 44°01' 128°51' 61.3 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 128°51' 61.3 340 7 60.5 59.0 1026 02 6 8 7 7 000 - 41 H-23 0505 25 44°01' 128°51' 61.3 340 7 60.5 59.0 1026 02 6 8 7 7 000 - 44 H-25 2015 26 44°06' 128°51' 63.0 340 8 62.0 60.0 1022 02 6 7 8 000 - 44 H-25 2015 26 44°06' 128°51' 61.8 330 5 61.7 59.2 1023 02 6 6 7 8 340 -	00	" 16	05.05	-	120501												290	-
30 - 1705 21 42°00' 128°49' 61.7 330 4 61.0 60.0 1023 16 0,6 7 5 330 - 290 1 31 H-17 2025 21 42°00' 129°20' 61.5 330 5 61.3 60.0 1023 25 6,8 7 7 330 1 32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 330 - 280 - 330 1 34 - 0520 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 6,8 6 8 - 330 - 330 - 290 - 35 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°00' 60.4 330 4 61.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 7 000 - 290 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 8 6 000 - 300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															·		280	_
31 H-17 2025 21 42°00' 129°20' 61.5 330		H-16										_					280	-
32 H-18 0505 22 42°01' 130°30' 61.2 330 5 60.2 59.5 1023 50 6,8 7 7 330 1 260 - 280	30	-	1705	21			61.7	330	4	61.0	60.0	1023	16	0,6	7	5		
33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 330 - 334 - 0520 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 6,8 6 8 - 35 H-20 1820 23 43°30' 132°02' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 36 - 0000 24 43°30' 132°02' 60.3 330 4 61.0 59.0 1027 02 0,6,8 7 8 000 1 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 59.6 58.3 1027 02 6 8 6 000 - 390 1 39 H-22 2010 24 44°00' 132°00' 60.8 340 5 60.0 58.7 1028 02 6 8 6 7 000 3 40 - 0130 25 43°88' 130°20' 61.0 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 128°41' 61.3 340 7 60.5 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 128°41' 61.3 340 7 60.5 59.0 1026 02 6 8 7 7 000 - 42 H-24 2110 25 44°01' 128°41' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 128°52' 63.0 340 8 62.0 60.4 1025 02 6 7 8 340 - 44 H-25 2015 26 44°06' 128°52' 63.0 340 8 62.0 60.0 1022 02 6 7 8 340 - 44 H-25 2015 26 44°06' 128°52' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 -	31	H-17	2025	21	42°00'	129°20'	61.5	330	>	61.3	60.0	1023	25	6,8	7	7		1 -
33 H-19 2215 22 42°00' 132°00' 61.0 330 5 60.3 56.7 1026 02 8 6 8 350 - 330 - 290 - 330 - 290 - 335 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 290 1 36	32	н-18	0505	22	42°01'	130°30'	61.2	330	5	60.2	59.5	1023	50	6,8	7	7		
34 - 0520 23 42°32' 132°03' 60.6 330 5 59.8 57.2 1026 02 6,8 6 8 35 H-20 1820 23 43°01' 132°00' 60.4 330 5 60.0 59.0 1027 02 0,6,8 7 8 000 1 290 1 36	33	H-19	2215	55	42°001	132°00'	61.0	330	5	60.3	56.7	1026	02	8	6	8	350	-
34 - 0520 23																		
36 - 0000 24 43°30' 132°02' 60.3 330 4 61.0 59.0 1027 02 6 7 7 000 - 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 000 - 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.0 58.7 1028 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 6 7 000 3 41 H-23 0505 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 7 7 000 6 42 B-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 8 340 7 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 -		-						330	5		57.2	1026	05	6,8				-
36 - 0000 24 43°30' 132°02' 60.3 330 4 61.0 59.0 1027 02 6 7 7 000 - 37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 000 - 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.0 58.7 1027 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6,8 6 7 000 3 41 H-23 0505 25 44°01' 128°51' 61.3 340 7 60.5 59.0 1026 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 128°41' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 8 340 7 44 H-25 2015 26 44°06' 126°01' 60.8 330 8 62.0 60.0 1022 02 6 7 8 340 7	35	H-20	1820	23	43°01'	132°00'	60.4	330	5	60.0	59.0	1027	02	0,6,8	7	8		_
37 H-21 0515 24 44°00' 132°00' 60.4 330 4 59.6 58.3 1027 02 6 7 8 000 1 38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 000 - 39 H-22 2010 24 44°00' 130°56' 60.8 340 5 60.0 58.7 1027 02 6,8 6 7 000 3 40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 129°51' 61.3 340 7 60.5 59.0 1026 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 126°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 8 340 7 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 -	36	-	0000	24	43°30'	132°02'	60.3	330	4	61.0	59.0	1027	02	6	7	7	000	<u> </u>
38 - 1720 24 43°59' 131°19' 60.8 330 4 60.0 58.7 1028 02 6 8 6 00 - 330	3 7	H-21	0515	24	144°00°	132°00'	60.4	330	4	59.6	58.3	1027	02	6	7	8	000	1
39	38	-	1720	24	43°591	131°19'	60.8	330	4	60.0	58.7	1028	02	6	8	6	000	_
40 - 0130 25 43°58' 130°20' 61.0 340 5 60.8 59.0 1026 02 6 7 8 000 - 41 H-23 0505 25 44°01' 129°51' 61.3 340 7 60.5 59.0 1026 02 6,8 7 7 000 6 42 H-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 000 - 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 -	39	H-22	2010	24		130°56'	60.8	340	5	60.0	58.7	1027	02	6,8	6	7		
42 B-24 2110 25 44°01' 128°43' 62.2 340 8 62.0 60.4 1025 02 6,8 7 7 340 7 43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 000 - 44 B-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 -		-							5		59.0	1026	02	6	7		000	-
43 - 0440 26 44°06' 127°52' 63.0 340 8 62.0 60.0 1022 02 6 7 7 000 - 44 H-25 2015 26 44°06' 126°01' 60.8 330 5 61.7 59.2 1023 02 6 7 8 340 -						128°43'								6,8				
	43	-	0440	26	44°06'	127°52'	63.0	340	8	62.0	60.0	1022	02	6	7	7	000	-
	this	H-25	2015	26	44°06°	126°01'	60.8	330	5	61.7	59.2	1023	02	6	7	8		-

TABLE 4.--Solar radiation measurements

	Date (July	Calculated length of day	Insolation (gcal./cm. ²)							
ı	1961)	(hours)	.AM	PM	Total					
	11	15.7	328	390	718					
	12	15.7	317	374	691					
	13	15.5	150	159	309					
	14	15.5	(151)	149	(300)					
	15	15.4	182	147	329					
	16	15.2	(180)	(254)	(434)					
	17	15.1	(275)	252	(527)					
	18	15.0	368	380	748					
	19	14.8	(203)	255	(458)					
	20	14.8	264	294	558					
	21	14.7	203	236	439					
	22	14.7	199	345	544					
	23	14.8	249	217	466					
	24	14.9	(249)	(249)	(498)					
	25	14.9	182	253	435					
	26	14.8	121	159	280					

TABLE 5.--Surface C¹⁴ productivity observations

Station	Date (July	Time Incubation (PST) (hours)		Productivity replicates (mg.C/m.3/day)					
	1961)	(FOI)	(Hours)	1.	2	3	Average		
P-1	11	1235	5.8	9.62	8.93	6.20	8.25		
P-6	14	1245	7.2	1.66	1.99	1.82	1.82		
P-7	15	0500	,	1.00		1.02			
P-8			7.5	-	4.23		4.23		
	15	1315	7.1	6.62	-	5.94	6.28		
P- 9	16	0525	7.2	-	4.85	6.41	5.63		
P-10	16	1240	7.5	1.03	1.44	1.82	1.43		
P-11	17	0500	7.3	3.97	(1.66)	2.91	3.44		
P-12	17	1240	7.5	3.13	3.56	(5.30)	3.34		
P-13	18	0530	6.9	4.67	-	6.33	5.50		
P-14	19	1230	7.3	2.58	3.60	-	3.09		
P-15	20	0505	7.1	_	4.81	-	4.81		
P-17	21	0520	7.0	5.41	-	-	5.41		
P-20	22	1240	7.5	1.06	1.36	-	1.21		
P-21	23	0510	7.5	1.52	1.83	-	1.67		
P-22	23	1240	7.5	2.23	2.62	-	2.43		
P-23	24	0520	7.5	3.75	4.88	-	4.31		
P-24	24	1310	7.5	1.93	2.83	-	2.38		
P-25	25	0520	7.1	7.35	-	-	7.35		
P-26	25	1240	8.1	2.20	4.65	-	3.42		
P-27	26	0535	7.0	4.78	6.29	_	5.53		
P-28	26	1320	6.9	5.83	8.33	-	7.08		

TABLE 6.--Surface chlorophyll $\underline{\mathbf{a}}$ measurements

Station	Date (July	Time (PST)	Sample volumes	Chlorophyll a replicates (mg./m.3)						
L	1961)	(101)	(1. each)	1	2	3	Average			
P-1	11	1235	3.0	0.13	0.23	-	0.18			
P-2	12	0435	3.0	0.12	0.08	0.11	0.10			
P-3	12	1445	3.0	0.10	0.11	0.10	0.10			
P-4	13	1335	3.0	0.19	(0.07)	0.23	0.21			
P-5	14	0500	2.0	0.09	0.04	0.11	0.08			
P-6	14	1245	2.0	0.06	0.09	0.09	0.08			
P-7	15	0600	2.0	0.21	0.22	0.24	0.22			
P- 8	15	1300	2.0	0.18	0.19	0.16	0.18			
P- 9	16	0525	2.0	0.19	(0.26)	0.20	0.19			
P-10	16	1240	2.0	0.12	(0.22)	0.15	0.13			
P-11	17	0500	2.0	0.17	0.11	0.14	0.14			
P-12	17	1240	2.0	0.21	(0.11)	0.20	0.21			
P-13	18	0530	2.0	(0.17)	0.21	0.19	0.20			
P-13A	18	1250	2.0	0.16	(0.26)	0.19	0.17			
P-14	19	1230	2.0	0.08	0.05	0.10	0.08			
P-15	20	0505	2.0	0.10	0.13	0.13	0.12			
P-17	21	0520	2.0	0.16	0.17	(0.11)	0.16			
P-18	21	1245	2.0	0.06	0.06	(0.10)	0.06			
P-19	22	0515	2.0	0.08	0.10	0.09	0.09			
P-20	22	1240	2.0	0.07	0.05	*0.05	0.06			
P-21	23	0510	2.0	0.10	0.07	*0.08	0.08			
P-22	23	1240	2.0	(0.15)	0.12	*0.10	0.11			
P-23	24	0520	2.0	0.11	0.12	*0.07	0.10			
P-24	24	1315	2.0	0.09	0.10	*0.11	0.10			
P-25	25	0520	2.0	0.09	0.13	*0.11	0.11			
P-26	25	1240	2.0	0.17	0.17	*(0.11)	0.17			
P-27	26	0535	2.0	0.28	0.24	*0.29	0.27			
P-28	26	1320	2.0	0.19	0.14	*0.15	0.16			

*Taken from separate bucket of water obtained up to 1/4 nautical mile from the first two (1 and 2).

TABLE 7.--Zooplankton collection data

Station											
P-3	P-6	P-8	P-10	P-12	H-14	P-16	P-18	H-19	H-20		
12	14	15	16	17	19	20	21	22	23		
1258	1230	1217	1214	1200	1342	1207	1206	1403	1148		
220	120	120	120	130	135	135	135	135	135		
950	300	380	370	510	790	530	520	500	510		
64	13	528	43	58	43	22	11	250	52		
67	43	1389	116	114	54	42	21	500	102		
	12 1258 220 950	12 14 1258 1230 220 120 950 300 64 13	12 14 15 1258 1230 1217 220 120 120 950 300 380 64 13 528	12 14 15 16 1258 1230 1217 1214 220 120 120 120 950 300 380 370 64 13 528 43	P-3 P-6 P-8 P-10 P-12 12 14 15 16 17 1258 1230 1217 1214 1200 220 120 120 120 130 950 300 380 370 510 64 13 528 43 58	P-3 P-6 P-8 P-10 P-12 H-14 12 14 15 16 17 19 1258 1230 1217 1214 1200 1342 220 120 120 120 130 135 950 300 380 370 510 790 64 13 528 43 58 43	P-3 P-6 P-8 P-10 P-12 H-14 P-16 12 14 15 16 17 19 20 1258 1230 1217 1214 1200 1342 1207 220 120 120 120 130 135 135 950 300 380 370 510 790 530 64 13 528 43 58 43 22	P-3 P-6 P-8 P-10 P-12 H-14 P-16 P-18 12 14 15 16 17 19 20 21 1258 1230 1217 1214 1200 1342 1207 1206 220 120 120 120 130 135 135 135 950 300 380 370 510 790 530 520 64 13 528 43 58 43 22 11	P-3 P-6 P-8 P-10 P-12 H-14 P-16 P-18 H-19 12 14 15 16 17 19 20 21 22 1258 1230 1217 1214 1200 1342 1207 1206 1403 220 120 120 130 135 135 135 135 950 300 380 370 510 790 530 520 500 64 13 528 43 58 43 22 11 250		

TABLE 8. Relative abundance of zooplankton organisms

[Symbola: D = dominant, C = common, F = few, T = trace]

	Stations										
Organisms	D 2	P-6	1 20	7.10							
	P-3	P-6	P-8	P-10	P-12	H-14	P-16	P-18	H-19	H-50	
Fish eggs	T	т	F	F	F	T	_	_	F	F	
Fish larvae (myctophids)	Ť	F	F	F	F	F	F	T	T	-	
Appendicularia											
Oikopleura spp.	T	F	-	T	T	F	-	_	т	F	
Thaliacea											
Salpa (fusiformis)	-	-	D	D	D	-	**	-	_	_	
Doliolidae	-	-	-	F	-	F	-	-	D	D	
Pteropoda											
Limacina helicina	F	-	-	F	F	F	T	-	F	F	
Limacina sp. Clione (limacina)	- F	-	-	-	-	-	-	-	F	-	
Euclio sp.	-	_	- F	_	_	_		_	_	_	
Heteropoda									_	_	
Atlanta (peroni)	_	_	-	F	_	_	_	_	F	F	
Cephalopoda	T(egg)		т	T	т						
	T(CRR)	-	1	T	т	-	-	-	T	T	
Echinodermata Ophiopluteii	89	_	_		T						
		-	-	-	1	-	-	-	-	-	
Amphipoda gammarid	_	_	F	F	F	т			m		
hyperiid			r	F	F	1	-	-	T	-	
Parathemisto pacifica	F	C	F	F	F	C	C	F	F	F	
Phronema sp.	-	-	F	-	-	F	-	F	F	T	
Streetsia sp. *Type I	- F	_	F	_	T T	_	T	~	F -	F F	
*Type II	_	-	-		_	_	T	F	T	F	
*Type III	-	-	T	-	-	-	~	-	_	F	
*Type IV	-	-	F	-	T	T	T	T	-	-	
*Type V	-	-	-	-	-	-	-	T	-	-	
Cirripedia Lepas nauplii, cyprids						m		m	m		
	-		-	-	-	T	-	T	T	-	
Copepoda Acartia longiremis						m		m			
Aetidius armatus	- F	_	- F	-	_	T -	F	T -		_	
Calanus cristatus	C	-	F	_	F	F	F	-	F	_	
C. tonsus	C	F	F	T	T	F	C	T	F	T	
C. finmarchicus s.l. Candacia bipinnata	С	C	F	F	C	-	F	-	F	F	
C. catula	-	_	F -	T	_	_	T F	_	F F	F F	
Centropages (abdominalis)		_	-	_	Т	_	_	-	_	-	
Clausocalanus arcuicornis	-	-	-	-	-	-	-	-	F	C	
Corycaeus s.p. Eucalanus bungii bungii	F C	c	- F	-	- F	-	-	-	T	-	
E. bungii californicus	-	C	-	c	-	c	C	F	c	c	
E. elongatus hyalinus	-	~	••	-	_	_	F	-	Č	Č	
Euchaeta (japonica)	F	T	-	F	F	F	F	T	T	-	
Euchirella bella	F	-	73	F	F	T	F	F	-	-	
Heterorhabdus papilliger Mecynocera clausi	F F	T C	F F	T F	F F	T C	F F	- F	T -	T -	
Metridia lucens	F	F	_	F	C	F	c	F	_	T	
Microcalanus sp.	F	C	F	F	F	C	F	C	F	F	
Oithona plumifera O. (similis)	F	F T	F	F T	Т	F	F	-	T	T	
0. (SIMITIE) 0. sp.	-	- -	_	- -	-	_	_	T	-	-	
Oncaea sp.	-	-	-	-	F	_	F	_	F	F	
Paracalanus parvus	-	C	F	F	-	C	F	C	F	-	
Rhincalanus nasutus Scolecithricella minor	- F	••	-	T	- m	-	~	-	-	-	
parasitic copepods	<u>r</u>	_	-	F -	T -	_	-	_	F T	-	
copepod eggs	C	-	F	-	F	F	T	-	Ť	-	
copepod nauplii	F	-	-	F	-	-	-	-	-	-	

TABLE 8.--Relative abundance of zooplankton organisms--Continued

[Symbols: D = dominant, C = common, F = few, T = trace]

Organisms					Sta	tions				
Organiamo	P-3	P-6	P-8	P-10	P-12	H-14	P-16	P-18	H-19	H-20
Euphausiacea										F
Nematoscelis difficilis	T	-	-	T	-	-	-	T	-	r
Stylocheiron sp. Thysanoessa longipes	T	F	- F	F	F	F	F	F	F	F
calyptopis (unidentified)	F	F	F	_	-	_	_	-	_	F
furcilia "	-	F	F	F	F	_	_	T	_	Ť
		-	•	•	-					_
Ostracoda	T			F	F	_	T	F	т	
Conchoecia (elegans) C. (daphnoides)	T	_	_	-		_	Ī	_	T	_
C. (daphnordes)	-	T	_		_	_	_	_	_	_
C. (daphnoides) C. (haddoni) C. sp.	T		_	_	F	F	_	_	_	_
_				_	-	_	_			_
decapod larvae (miscellaneous)	T	-	T	T	-	T	F	-	T	F
Polycheata										
Tomopteris sp.	-	-	F	T	T	-	-	F	F	C
Alciopidae	-	-	-	-	-	-	-	-	-	F
Chaetognatha										
Sagitta elegans	C	C	_	_	_	-	C	-	-	-
S. scrippsae	F	F	F	F	F	D	D	C	F	C
S. decipiens	-	-	-	-	-	-	-	-	-	C
S. tenuis	-	-	F	C	F	C	C	-	-	-
S. neglecta	-	-	-	-	-	-	-	C	_	-
S. sp.	-	-	-	-		-	-	C	F	-
Eukrohnia hamata	C	F	-	F	T	-	-	-	-	-
Ctenophora	T	-	F	F	C	-	-	-	-	-
Siphonophora	-	F	C	C	C	-	-	-	F	C
Hydromedusae	F	C	F	F	F	F	F	-	F	C
Radiolaria	F	F	F	F	F	F	F	D	F	C

^{*}Unidentified hyperiid amphipods.

TABLE 9.--Albacore trolling results

Date (July	Tr	olled between	en positio	ns	Time start	Time stop	Total	Lines	Number	of fish	
1961)	Lat. N.	Long. W.	Lat. N.	Long. W.	(PST)	(PST)	(hours)	fished	caught	tagged	observed
11	47*45'	125°22'	4 7°4 5'	127°35'	0730	2045	12.0	7	-	-	***
12	47° 44'	128°071	47° 47 '	129°56'	0815	2040	12.0	7	-	-	-
13	47° 441	130°27'	46° 00 ¹	130°25'	0520	2010	12.5	7	-	-	-
14	45°521	130°301	45° 581	128°10'	0515	2000	12.2	7	1	-	-
15	45°581	128°10'	46°00°	125°54'	0620	2030	12.1	$7/8^{\frac{1}{2}}$	-	-	-
16	45°561	125°57'	44°591	125°29'	0640	2030	10.8	7,		-	-
17	44°571	125°31'	43°18'	125°32'	0600	2030	14.3	7/8 ¹ /		-	-
18	42°571	125°31'	42°57'	125°31' ² /	1130	2030	9.0	7,	1	-	1
19	43°051	125°30'	42°001	126°04'	0440	2030	13.2	7/81/	21	-	7
20	41°55'	126°06'	42°001	128°03'	0430	2030	15.2	8	1	-	-
21	41°56'	128°06'	42° 00 1	130°22'	0445	2035	13.5	8	2	-	-
22	41°59'	130°33'	42°301	132°02'	0500	2050	14.0	8	3	-	2
23	42°281	132°03'	44°001	132°00'	0515	2050	13.8	8	2	-	-
24	44°001	132°001	44°00 °	129°52'	0500	2040	13.7	8 ,	-	-	-
25	43°541	129°46'	44° 04 1	12 7° 55'	0500	2035	14.1	6/8 ¹ /	7	-	8
26	44°07'	126°48'	44°13'	125°22'	0500	2015	13.5	5	16	6	5
Tota	ls					• • •	206		54	6	23

 $[\]frac{1}{2}$ Line(s) added during fishing period.

TABLE 10.--Gill net results

Date (July	Pos	ltion	Time set	Time hauled	Total hours	Catch
	Lat. N.	Long. W.	(PST)	(PST)	fished	
11	47°45'	127°35'	2120	0540	8.4	6 sharks, 2 anchovies
14	45°58'	128°10'	2018	0600	9.7	1 shark, 3 scad,
						2 albacore, 1 bluefin
15	46°001	125°53'	2045	0610	9.4	19 sharks, 11 scad
16	44°591	125°30'	2045	0540	9.0	10 sharks, 4 scad
Total	.5				36.5	36 sharks, 18 scad, 2 anchovies, 2 albacore, 1 bluefin

MS #1255

6P0 936-771

 $^{2/}_{\rm Within}$ a 10-nautical mile square during trolling period.

Created in 1849, the U.S. Department of the Interior is concerned with the management, conservation, and development of the Nation's water, fish, wildlife, mineral, forest, and park and recreational resources. It also has major responsibilities for Indian and Territorial affairs.

As the Nation's principal conservation agency, the Department works to assure that nonrenewable resources are developed and used wisely, that park and recreational resources are conserved for the future, and that renewable resources make their full contribution to the progress, prosperity, and security of the United States—now and in the future.

